
Error Reporting Logic
Ciera Jaspan

Carnegie Mellon University
Pittsburgh, PA USA

ciera@cmu.edu

Trisha Quan
Carnegie Mellon University

Pittsburgh, PA USA
tkq@andrew.cmu.edu

Jonathan Aldrich
Carnegie Mellon University

Pittsburgh, PA USA
aldrich@cs.cmu.edu

Abstract—When a system fails to meet its specification, it can
be difficult to find the source of the error and determine how to
fix it. In this paper, we introduce error reporting logic (ERL),
an algorithm and tool that produces succinct explanations for
why a target system violates a specification expressed in first
order predicate logic. ERL analyzes the specification to determine
which parts contributed to the failure, and it displays an error
message specific to those parts. Additionally, ERL uses a heuristic
to determine which object in the target system is responsible
for the error. Results from a small user study suggest that the
combination of a more focused error message and a responsible
object for the error helps users to find the failure in the system
more effectively. The study also yielded insights into how the
users find and fix errors that may guide future research.

I. I NTRODUCTION

Many specification languages are based upon first-order
predicate logic. This is a very natural route to take for
specifications; it provides a concise, expressive, and well-
understood way for describing system-level details. Examples
of such specification languages in recent literature include
Acme, SCL, and Alloy [1]–[3]. In each of these languages,
FOPL-based specifications constrain a system, and a tool
produces errors when there is an inconsistency between the
specifications and the system. The error messages produced
by these systems generally fall into three categories:

• Specification identifier.Under this mechanism, the tool
produces an error message that states which specification
failed. The user must read the specification and manually
analyze the system to determine which part of the system
broke the specification.

• Human generated message.This mechanism attempts to
provide the user with an intuitive understanding of the
specification. The specification writer makes a generic
summary about what the specification is checking, and
this is used as the error message. The user can then
use this message as a guide to understand the general
problem.

• Hybrid systems.Some tools also hybridize the two mech-
anisms; they will use a human generated error message
if it exists, but they will fall back on a specification
identifier.

These mechanisms work very well for specifications that are
short and have an obvious point of failure. However, they do
not work well for complex specifications, such as the Acme
specification shown in Figure 1. By Acme standards, this is a
medium sized specification. It has 3 levels of quantification, a

forall con : ORMConnector in self.CONNECTORS |
forall comp : Component in self.COMPONENTS |
forall p : Port in comp.ports |
(attached(con.caller, p) ->
declaresType(comp, Data) and
declaresType(p, DataPort))

Fig. 1. Sample Acme Specification

very small inner predicate, and it only calls pre-defined atomic
predicates.

If the user must read the specification itself, they can quickly
become lost in the details of the specification. There is no way
to tell which sub-predicates in the specification failed, sothe
user must check each one. The user also doesn’t know which
elements in the system caused this failure and so must check
all elements with matching types.

Even if the specification writer provided an error message,
this would not necessarily help a user. An error message would
tell us the purpose of the specification, and this might help the
user look for bad patterns of behavior in the system. However,
it still does not describe which predicate failed or which object
in the system caused the failure.

In Figure 1, the user would have to check the entire system
for conformance to the specification. What we would prefer
is an error message that says:

myPort must declare the type DataPort since
myConn.caller is attached to myPort

Error reporting logic (ERL) provides an automated way for
creating error messages such as the one above. ERL presents
each failing point as a unique error. To do this, it singles out
only the failing predicates and assigns responsibility of the
error to a specific object in the system.

In this paper, we will provide four contributions related to
error messages from FOPL-based specifications:

• We present a user study that provides several insights
into how users examine errors to find the root cause of the
problem and how users attempt to fix the error. Primarily,
we found that users see an error message as a single task
which they must resolve, they only use keywords to find
the problem rather than reading anything in depth, and
they frequently rely on pattern recognition to find and fix
errors. (Section II)

• We present ERL, a system for automatically generating
error messages from a specification based on first-order

Fig. 2. The Web System in AcmeStudio

predicate logic. Section III will show how the ERL
handles each of the specifications from the user study,
and Section VI shows how the implementation of ERL
performs with MDS, the most complex architectural
specification built with Acme.

• We have implemented ERL as a reusable component and
have integrated it within AcmeStudio [4]. The integration
was relatively straightforward and required only a small
amount of work to change the error messages. Section
IV provides implementation and integration details.

• During the user study, the same participants also used
ERL. In section V we describe how the users reacted to
the new error messages. Three of the four participants
benefited from the ERL error messages. The remaining
participant did not benefit, but was not hindered, by the
error messages.

Throughout this paper, we will use the Acme specifica-
tion language (and AcmeStudio, the graphical interface and
checker for Acme) as our example system. AcmeStudio allows
developers to view a graphical representation of an architec-
ture. While the developers can access and edit the Acme code
behind the graphical view, it is typically not used. AcmeStudio
displays the architecture using component-connector diagrams
which can be edited entirely through a user interface. A sample
diagram for an architecture is shown in Figure 2.

If an architecture fails to meet a specification, a red error tri-
angle appears at the place where the specification was defined,
as shown in Figure 2. Notice that this is not necessarily the
component which is causing the failure. If the specification
was defined at the system level, rather than the component
level, then no error triangle appears.

In Acme, a software architect can choose to associate
a handwritten error message to each specification. If the
specification fails, for any reason, AcmeStudio displays the
error message and a link to the specification code, in addition
to the graphical indicator of the error. If the architect didnot
provide a default error message, then AcmeStudio displays
only the link to the specification code. Since the architect

TABLE I
PARTICIPANTS

ID Configuration 1 Configuration 2

A Web + ERL Build
B Web Build + ERL
C Build + ERL Web
D Build Web + ERL

can only write one message for the entire specification, the
error message is typically about the general purpose of the
specification.

II. H OW USERS FIND SPECIFICATION ERRORS

We ran a small user study of AcmeStudio to determine
how users fix errors, with and without ERL loaded.1 The four
participants were Masters students and had used AcmeStudio
to complete a couple of class assignments. The participants
were told that the study was about usability in AcmeStudio
and how developers find and fix errors; they were not told that
the error messages were changed until after the main part of
the study.

We provided the participants with two sets of Acme speci-
fications, and we created an architecture for each which broke
several of the specifications. The participants were asked to
fix all the errors in the architectures. We asked participants to
talk aloud while they worked, and we recorded each session
with voice recordings, screen capture, and our observational
notes.

Each participant used both sets of specifications, and each
participant used AcmeStudio with and without ERL loaded.
Participants were each assigned a different configuration in a
different order, as shown in Table I.

The seeded errors were approximately equivalent in both
systems. We created five categories of specifications, as de-
tailed in Table II. Each system contained a broken specification
from each category, and they were approximately the same
level of difficulty to find and fix.

While Acme supports hand written error messages, they are
infrequently used in practice, and we did not include them in
the user study. The participants either received a message from
ERL, or they received the name of the specification which
broke. In both systems, the specification source was easily
available by double-clicking on the error. The specifications
were written in a style familiar to Acme users, and we only
used atomic predicates of Acme which our users were already
familiar with, found below.

• binary relationssuch as<, >, and==.
• size(l) to get the size of a listl.
• attached(o1, o2)to test if o1 is directly attached too2.
• declaresType(o, t)to test if o declares the typet.

A. Results from the control

We will start by looking at how the participants fixed errors
in the control system. This provided several insights into prob-

1The participants used an earlier version of ERL than is presented in Section
III, but it had the same practical effect in the study.

TABLE II
BROKEN SPECIFICATIONS

Type of error How broken in the
given architecture

Example specification from the user study

Simplecontains atomic
predicates and at most 1
universal quantifier

The atomic fails once
rule atLeastOneAttachedRole =
size(self.ATTACHEDROLES) >= 1;

Conjunctioncontains at least
1 conjunction of atomics and
at most 2 quantifers

Both parts of the
conjunction fail in
one instance

rule hasInAndOut =
(exists p:Port in self.PORTS |
declaresType(p,ORMPort)) and
(exists p:Port in self.PORTS |
declaresType(p,dataProvider));

Quantificationcontains at
least 2 quantifiers

The specification
fails for two
instances

rule ResultsOnly =
forall comp:DeployResults in self.COMPONENTS |
forall p:inputPort in comp.PORTS |
declaresType(p, resultsPort);

Disjunctioncontains at least
1 disjunction and at most 1
quantifer

Both parts of the
disjunction fail in
one instance

rule usingXMLRoles =
forall r:Role in self.ROLES |
declaresType(r, XMLReceiverRole) or
declaresType(r, XMLProviderRole);

Other may contain any other
predicate and one universal
quantifiers2

The predicate under
test fails once.

rule compilingIsOutput =
forall p:Port in self.PORTS |
declaresType(p, compilePort) ->
declaresType(p, outputPort);

lems users have with the existing error reporting mechanisms,
including problems which ERL solves and problems for future
work. In this section, we will look at trends we saw when
participants from our user study used the original version of
AcmeStudio. Later, in Section V, we will see how ERL helped
several users find the root cause of the error.

With each of the errors, all of the participants used the
graphical cues as a starting point. Of the five specifications,
only four had graphical cues; one rule was defined at the
system level and therefore had no graphical cue. Participant
B investigated this error early on and decided to come back
to it later because he could not easily find the location of the
error.

The next step participants took was to read the specification
source. When participants did this, they typically did not fully
read the specification, but rather scanned it for keywords such
as type names. When they flipped back to the architecture,
they looked for a place where there were elements with those
types all near each other. They would then investigate this area
of the architecture thoroughly to determine whether something
was obviously wrong, such as an unattached connector. The
participants fully read the specification only when they could
not find the problem through other means.

Participant D did attempt to fully read the specification to
find an error, but soon ran into difficulties. The participantwas
working on theconjunctionerror from Table II and started
by quickly reading through the specification. The participant
noted that there were two parts to this specification and said

“Does it tell me which side is failing?... Nope, no
help.”

2Build had a failing implication, and Web had a failing existential

The participant then spent several minutes trying to understand
the specification and reviewing the architecture around the
error location. This participant became more frustrated atthis
point, asking

“But which part of the error is failing? It would be
nice to see which part is failing so I don’t have to
parse it.”

The final major technique participants used to find the
error was to recognize and mimic “good” patterns. They
would start noticing the patterns of how architectural elements
were laid out and then check other elements to see if they
conformed to the same pattern. In some cases, participants
would believe they had found a problem that didn’t actually
exist, or they would find a problem that was different from
the one they believed they were after. Upon finding any
inconsistent patterns, the participant would attempt to make
them identical.

This worked best if the participant understood the cause of
the error before looking at the good example, or at least figured
out the problem while they were looking at the example. If
the participant did not understand the cause of the error, they
could accidentally believe the correct example was actually the
incorrect one. This problem occurred with thequantification
errors from Table 2 since the participants could not tell which
elements cause the failure.

Participant C used this technique quite frequently during the
control part of the study. This participant made four comments
about this during the study, usually comparing himself to a
monkey:

“Doing like a monkey, trying to match patterns...”
In several cases, Participant C found the inconsistency and

fixed the error without ever knowing what the problem was.

B. Expectations for ERL

Based on the information from our user study, we believe
that error reporting systems should:

• Direct users to the likely cause of the error, rather than
the location where the specification is defined

• Assist users by including relevant keywords and exclud-
ing irrelevant ones

• Focus users on the part of the error they need to fix
• Provide users with examples that correctly pass the spec-

ifications

As we will see in the next section, ERL achieves three of the
four objectives above. We leave the last task, providing users
with examples, for future work, as it is not clear whether this
will help users or possibly misdirect their attention.

III. E RROR REPORTINGLOGIC

In this section, we will see how ERL breaks down specifi-
cations to include only the relevant information about an error.
To facilitate this explanation, we will use the error messages
ERL produced during the study.

The intuition behind all of these rules is that ERL will pro-
duce an error for each “fix task” that the user must complete in
order to make the specification succeed. Therefore, a user may
have to complete several fix tasks before a specification passes,
but each task can be thought of as logically independent from
the other tasks. By doing this, ERL focuses the user on only
a small portion of the overall failure and provides keywords
relevant for only that portion.

ERL also associates each error message with a single object
which is responsible for the error. This allows a system to add
features such as jumping to a line number of code, or, in
the case of AcmeStudio, indicating an architectural element
as being at-fault. The choice of theresponsible objectis a
heuristic because there is not enough information to tell which
object is truly at-fault. For example, consider the case where
the predicateA(x) =⇒ B(y) fails. It is not clear whether
B(y) should be true, thus makingy responsible, or whether
A(x) should be false, thereby causingx to be responsible for
the error. Even in a single atomic predicate, the responsible
object is ambiguous if there are multiple variables, such asthe
case inequals(x, y). Therefore, ERL uses a heuristic based
on the structure of the specification to determine which object
is likely to be responsible. Regardless, ERL does guarantee
that the responsible object was used in the failing predicate,
even if it is not semantically the root cause.

The judgments for ERL are in the form

M, Γ ⊢ p →֒ S

which is read as “Given the oracleM and contextΓ, the
predicatep produces the set of errorsS”.

Γ is a context that maps a unique variable name to a host-
specific object. Byhost, we are referring to any FOPL-based
specification system that uses ERL, such as Acme.

The oracle M is provided by the host specification sys-
tem. The oracle provides answers to queries aboutatomic
predicates, that is, a predicate which has some host-specific
semantics. Our concept of an oracle is based on the concept
of the oracle used in testing and [5]. In ERL, the oracle can
be queried for the following:

• evaluate(Γ, a) evaluates whether the atomic predicatea

is true, given the context provided inΓ.
• items(Γ, e) retrieves a list of objects for a quantifier, given

some host-specific expressione.
• freevars(p) retrieves the free variables inp.
• text(Γ, p, isNegative, isDeontic) gets the message for

the predicatep, given the contextΓ. When p is an
atomic predicate, this message is host-specific. We list
a sampling of messages defined by the Acme oracle in
Figure 3. If isNegative is true, we must negate the
message. IfisDeontic is true, the oracle produces a
message in deontic mode (“a must be equal to b”), while
if it is false, the message is stated as a fact (“a is equal
to b”).

The setS is a set of tuples(r,x, m) wherem is the error
message,r is the responsible object, the host-specific object
that ERL will blame the error on, andx is the set of variables
used to createm that are still unbound. Notice that for a
single specification, the algorithm can produce multiple error
messages, and each error message has its own responsible
object. It is possible for the responsible object to have no
value, represented in our rules as•. In this situation, the host
specification system may use its default assignment.3

The predicatep may be any first order logic predicate.
ERL currently works for conjunction, disjunction, implication,
negation, universal quantification, and existential quantifica-
tion. Other first-order connectives, such as exclusive disjunc-
tion or unique quantification, can be added to ERL, but higher
order predicates are not supported. Predicates also include any
atomic predicates that are defined by the host specification
system. Atomic predicates may be nested if the host system
allows it, but ERL treats the entire predicate as an atomic
predicate and will not descend into it.

In the remainder of the section, we will look at the rules
for each logical connective. We will refer to the example
specifications from Table II and also provide the error message
and responsible object which ERL produces.

A. Simple Specifications

For thesimpleerror shown in Table II, ERL produces the
error message:

The size of interData1.AttachedRoles must be
greater than or equal to 1.
(Responsible object: interData1)

The ERL rules for atomic predicates are:

M.evaluate(Γ, a) = true

M, Γ ⊢ a →֒ ∅
(A−TRUE)

3Acme assigns the error to the object which defined the specification; this
is theself object in the example specifications.

M.text(Γ, declaresType(a, b), false, true) = Γ(a) + “ must declare the type” +Γ(b)

M.text(Γ, attached(a, b), false, true) = Γ(a) + “ must be attached to” +Γ(b)

M.text(Γ, equals(a, b), false, true) = Γ(a) + “ must be equal to” +Γ(b)

M.text(Γ, equals(a, b), true, true) = Γ(a) + “ must not be equal to” +Γ(b)

M.text(Γ, equals(a, b), false, false) = Γ(a) + “ is equal to” +Γ(b)

M.text(Γ, equals(a, b), true, false) = Γ(a) + “ is not equal to” +Γ(b)

Fig. 3. Sampling of atomic messages for Acme

M.evaluate(Γ, a) = false

M, Γ ⊢ a →֒
{(•, M.freevars(a),M.text(Γ, a, false, true))}

(A−FALSE)

As the specification has only an atomic predicate, this was
produced by directly querying the oracle for the truth of this
statement and the error message. The message is stored in the
error set. At the atomic level, we do not yet know which object
will be responsible for this failure, so this is left as• for now.
Section III-D will show how this is filled in.

B. Splitting errors

Our goal in ERL is to make each error represent a correction
that the user must make in order to meet the specification. To
do this, we will split errors upon evaluating a conjunction
so that each side will produce a separate error. In ERL, the
conjunctionerror from Table II produces two distinct errors:

There must exist a p in SectionData.Ports such that
p declares the type dataProvider.
(Responsible object: SectionData)
There must exist a p in SectionData.Ports such that
p declares the type ORMPort.
(Responsible object: SectionData)

The ERL rule that produces these errors, shown below,
simply evaluates each side independently and unions the sets
of errors together. Because of this split, the errors from the
two sides may even have two different responsible objects.

M, Γ ⊢ pa →֒ Sa M, Γ ⊢ pb →֒ Sb

M, Γ ⊢ pa ∧ pb →֒ Sa ∪ Sb

(∧)

C. Joining errors

When the user attempts to fix thedisjunctionerror in Table
II, they are working on a single task. Therefore, ERL shows
a single error message. While the message can be lengthy, it
contains all the keywords which a user might need to fix the
error.

DataModelReceiver0 must declare the type XMLRe-
ceiverRole or DataModelReceiver0 must declare the
type XMLProviderRole
(Responsible object: DataModelReceiver0)

This message was created by the ERL rule for joining
messages on a disjunction failure, described below by rule
(∨ − false). Notice that if we have already split the error
on both sides, we must rejoin all the splits into a single
error message. This does mean that the error messages are
much longer, but they are also specific to the task at hand.

As an alternative to joining, if the specification system has
hierarchical error reporting, ERL could create sub-errorsand
instruct the user to fix one sub error.

M, Γ ⊢ pa →֒ ∅ M, Γ ⊢ pb →֒ S

M, Γ ⊢ pa ∨ pb →֒ ∅
(∨−TRUE−1)

M, Γ ⊢ pa →֒ S M, Γ ⊢ pb →֒ ∅

M, Γ ⊢ pa ∨ pb →֒ ∅
(∨−TRUE−2)

M, Γ ⊢ pa →֒ {(r1

a,x1

a, m1

a), . . . , (rk
a,xk

a, mk
a)}

M, Γ ⊢ pb →֒ {(r1

b , x1

b , m
1

b), . . . , (r
j

b ,x
j

b, m
j

b)}
k ≥ 1 j ≥ 1

M, Γ ⊢ pa ∨ pb →֒ {(•,
x

1

a ∪ . . . ∪ x
k
a ∪ x

1

b ∪ . . . ∪ x
j

b,

m1

a + “ and ” + . . . + “ and ” + mk
a+

“ , or ” + m1

b + “ and ” + . . . + “ and ” + mj

b)}

(∨−FALSE)

D. Assigning a responsible object

When generating errors for a failing universal quantifier,
we would like to see which quantified objects caused the
failure rather than a single failure for the entire predicate.
This allows the user to determine which parts of the system
failed and to work on each task separately. Therefore, like the
conjunction rules, the rules for universal quantification split
errors and produce separate sets of errors for each failing
object. Additionally, the rules for universal quantification must
determine the responsible object for the error by using the
heuristic to assign each error to the object bound in the nearest
universal quantifier. Therefore, ERL produces the following
error messages for thequantifierspecification in Table II:

InputT3 must declare the type resultPort.
(Responsible object: InputT3)
InputT4 must declare the type resultPort.
(Responsible object: InputT4)

The rules for universal quantification are:

M.items(Γ, L) = ∅

M, Γ ⊢ ∀x ∈ L . p →֒ ∅
(∀−0)

M.items(Γ, L) = {o1, . . . , on} n ≥ 1
M, Γ[x 7→ o1] ⊢ p →֒ S1

...
M, Γ[x 7→ on] ⊢ p →֒ Sn

(x fresh in Γ)

M, Γ ⊢ ∀x ∈ L . p →֒
{(oi,x/x, m) | (•,x, m) ∈ Si ∧ x ∈ x ∧ i ∈ {1 . . . n}} ∪

{(r,x/x, m) |
(r,x, m) ∈ Si ∧ (x 6∈ x ∨ r 6= •) ∧ i ∈ {1 . . . n}}

(∀−N)

The rules bind each object individually, generate errors from
the inner predicate, and then substitute in the responsible
object if the error does not already have one and if the message
uses the variable bound by the quantifier. The end result is
the heuristic that the responsible object is inserted by the
inner-most quantifier of the failing predicate. This makes sense
since the inner-most quantifier may rely on outer quantifiersto
produce the quantification list. We have also observed that,in
general, specification writers order quantifiers with the most
general variables first and then proceed into more specific
variables. Even if the selected object is not truly the root cause
of the failure, the rule does guarantee that the object is used
in the error message due to its inclusion inx and therefore
plays some role in the failure.

If there is no universal quantifier that bound a free variable
in the error message, it is possible for ERL to return errors
which do not have a responsible object. Since there are
no universal quantifiers, the variables must either have been
introduced by an existential or be pre-defined. In this case,
ERL uses the default responsible object that would have been
used by the host system. Acme defaults to the object which
defined the specification, theself object, since this is the
only known object.

This rule requires that all quantified lists in the host must
be finite. This is true in the systems we expect ERL to work
for, as the host system must be able to test each item in the
list. 4

Universal quantifiers make a clear case for when splitting
is important. Consider a specification which quantifies overa
list of 100 elements, and 10 of these elements cause a failure,
possibly failing in different ways. Instead of a single error,
ERL will produce 10 errors. Each error would be associated
to a distinct object, and the error messages themselves would
be different forms if the specification failed in different ways
for each variable binding.

E. Relying on current state

In most cases, ERL creates error messages in the deontic
mode and describes a correction that the user must make to for
the specification to be correct. However, ERL must sometimes
describe the current state of the system to the user, such as in
the rules for implication and existential quantification. In the
rules for implication, ERL provides the user with information
about how the error was triggered.

For theother error in Table II, ERL produces:

outputT0 must declare the type outputPort since
outputT0 declares the type compilePort.
(Responsible object: outputT0)

ERL produced this by asking the oracle for the text on the
left side of the implication stated as a fact rather than as
an instruction, as described earlier in Figure 3. The rules for
implication are:

4If the list was infinite, then the host system must have theorem-proving
capabilities in order to test the predicate. ERL is not expected to work under
these environments without significant modification.

M, Γ ⊢ pa →֒ ∅ M, Γ ⊢ pb →֒ ∅

M, Γ ⊢ pa =⇒ pb →֒ ∅
(=⇒ −TRUE1)

M, Γ ⊢ pa →֒ Sa M, Γ ⊢ pb →֒ Sb Sa 6= ∅

M, Γ ⊢ pa =⇒ pb →֒ ∅
(=⇒ −TRUE2)

M, Γ ⊢ pa →֒ ∅ M, Γ ⊢ pb →֒ S S 6= ∅

M, Γ ⊢ pa =⇒ pb →֒ {(r,x ∪ M.freevars(pa),
m + “ since ” + M.text(Γ, pa, false, false)) |

(r,x, m) ∈ S}

(=⇒ −FALSE)

The rules for the existential quantifier, below, also take
advantage of this message form. Like disjunction, exists must
join the current error sets. While this results in a relatively
longer message, it contains only the keywords that the user
needs.

M.items(Γ, L) = {o1, . . . , on}
M, Γ[x 7→ o1] ⊢ p →֒ S1 . . . M, Γ[x 7→ on] ⊢ p →֒ Sn

S1 = ∅ ∨ . . . ∨ Sn = ∅
n ≥ 1 (x fresh in Γ)

M, Γ ⊢ ∃x ∈ L . p →֒ ∅
(∃−TRUE)

M.items(Γ, L) = ∅ (x fresh in Γ)

M, Γ ⊢ ∃x ∈ L . p →֒ {(•, “There exists no ” +x
+ “ such that ” +M.text(Γ, p,false, false))}

(∃−FALSE−0)

M.items(Γ, L) = {o1, . . . , on} n ≥ 1
M, Γ[x 7→ o1] ⊢ p →֒ S1

...
M, Γ[x 7→ on] ⊢ p →֒ Sn

S1 6= ∅ ∧ . . . ∧ Sn 6= ∅ (x fresh in Γ)

M, Γ ⊢ ∃x ∈ L . p →֒
{(•, M.freevars(p), “There exists no ” +x

+ “ such that ” +M.text(Γ, p,false, false))}

(∃−FALSE−N)

F. Negation

ERL handles negation predicates separately from the other
predicates. If simply we print out “not”, or an equivalent
negative, anytime we see the predicate, we can introduce
ambiguity and double (or more!) negatives. Instead, ERL first
normalizes the specification by pushing not predicates inward
to atomic predicates, and then it requests that the oracle
provide a reasonable negation messages for atomic predicates.
The oracle then produces single negative phrases, examplesof
which are shown earlier in Figure 3. As most atomic messages
are a single phrase, we have pushed the negatives down to a
level where they are unambiguous and understandable. The
rules for negation below assume that the specification has
already been normalized.

M.evaluate(Γ, a) = false

M, Γ ⊢ ¬a →֒ ∅
(¬−TRUE)

M.evaluate(Γ, a) = true

M, Γ ⊢ ¬a →֒
{(•, M.freevars(a), M.text(Γ, a, true, true)}

(¬−FALSE)

IV. I MPLEMENTATION OF ERL

We implemented the ERL rules in Prolog, and we provided
a Java wrapper and interface for the oracle. For a system to
use ERL, it must be able to transform its specifications into the
types defined by ERL, and it must provide an implementation
of the oracle.

We implemented a transformer and oracle for AcmeStudio.
The ERL addition to Acme required 139 LOC for the trans-
forming functionality, and 643 LOC for the oracle. Of the lines
of code for the oracle, 486 LOC were for generating messages
for atomic predicates and retrieving the names of elements in
Γ. The remaining code was used to interact with AcmeStudio’s
existing typechecker. Acme utilizes all of the rules described
in Section III.

V. USER STUDY RESULTS

As discussed in Section II, we ran a small user study
where each participant attempted to fix errors in two Acme
architectures. The users were provided with ERL for one of
the two architectures. Both architectures contained five failing
specifications, as described in Table II, and ERL expanded
these into seven distinct errors due to splitting from conjunc-
tions and universal quantifiers. The qualitative data suggests
that ERL is helpful for many users, particularly for complex
specifications. When it was not helpful, it did not misdirector
otherwise hinder users.

A. Results by type of error

For the simple errors, as defined in Table II, users did
not receive any additional benefit from ERL. The graphical
indicators were already in the correct place in the control
configuration, and the specification was short enough that
users could quickly find the problem. Additionally, the rule
names themselves were descriptive enough that the errors were
fairly obvious. Users almost always went directly to the cause
and guessed what the problem was without reading the error
message, so ERL did not help or hinder in this case.

One problem we noted was that fully qualified names in
error messages confused participants. Upon seeing a qualified
name, participants were overwhelmed by the number of words,
so we have removed this from ERL. The graphical indicators
already point the user to the location of the objects, so there
should be little information lost. The participants in thisstudy
did receive error messages with fully qualified names, and
we expect that this change would have improved the overall
results.

As expected, ERL was much more helpful forconjunction
errors. Participant D, who made several comments about not
knowing which side of a conjunction was failing during the
control portion of the study, was clearly helped by the ERL
error messages. When using ERL, this same participant read
the error message for the conjunction failures and fixed both
errors in approximately three minutes.

The results of thedisjunctionerror were surprisingly mixed.
While we expected the wordiness to bother participants, par-
ticipants A and D strongly preferred the ERL error message

to using the system without ERL. When participant D initially
opened the second system, he expressed concern that the errors
were going to be as difficult to fix as before:

“Ugh, it’s all typecheck [errors] still...”

After examining a few error messages, the participant chose
to start with the disjunction error and fixed it within a few
minutes by doing what the error message suggested. Upon
seeing the error go away, the participant commented:

“So, this seems like not too much thought.”

Participant B found that the error message was “not at all
helpful”, though participant B did not find any of the error
messages helpful.

ERL appeared to help participants A, C, and D when fixing
errors that came from failingexistentialsand failing impli-
cations. In particular, ERL helped clear up confusion about
variable bindings. In the control part of the study, Participant
A was slightly confused by the implication specification in
Table II. The participant believed that twodifferentports had
to be a compile port and an output port. Participant A read
the specification and examined the seemingly correct system
several times before finally realizing the confusion. When
participant C encountered this error with the ERL message
instead, the participant did not even have the opportunity to be
confused. The ERL error message replaced the variablep with
the specific port nameoutputT0, and the participant clearly
understood that this port had to be both an output port and a
compile port. The only time participants saw variables in the
error messages was when they encountered a failure from an
existential. Participant D did not appear to be bothered by this,
while participant A would jump to the source to understand
the error better.

The true test of ERL was theuniversal quantificationerrors.
These errors were generally the hardest to fix as they were the
most complex, they were declared at the system level, and they
failed in two places in the architecture. For these errors, ERL
was clearly an improvement over the control system. In the
control, participants narrowed down their search by reading the
specification, but they still had problems after that. In theBuild
example, there were four objects that were being quantified
over, and participants had to carefully inspect each one. They
discovered the problem by carefully exploring each of the four
objects and noticing that two were slightly different. Then
they went back to the specification, determined which set of
two objects were causing the problems, and corrected them.
However, participant C believed that the correct connectors
were the incorrect ones, and accidentally “fixed” the wrong
connectors! The participant realized the mistake after thetool
did not remove any errors when rechecking the system. The
ERL errors were clearly helpful in these cases, and participants
appeared less frustrated during their search for the root cause.

B. Participant impressions of the ERL messages

After the users fixed the errors in both architectures, they
took a post-survey about the error messages that they saw. Both
participants C and D preferred the ERL messages. Participant

A believed the two configurations were very similar and no-
ticed little difference between the error messages. Interestingly,
this participant used and was clearly helped by the error
messages during the study. The error messages were possibly
unobtrusive enough that the difference did not register to the
user given all the other features of AcmeStudio.

Participant B preferred to just know which specification
failed and view the source directly. However, the participant
chose not to read the specification source when using ERL,
even though the source was equally available in both systems.
This participant switched quickly between tasks in both parts
of the study and did not appear to spend much time focusing
on the errors. The participant also completed very few tasks
during the study and had to be stopped due to time constraints.

From this qualitative data, we believe that the error mes-
sages provided by ERL certainly help with some kinds of
failures, and some users clearly prefer them. Inno situations
did ERL misinform the users, lead them away from the
cause of the error, or otherwise hinder their progress. In each
situation, it either helped or had no effect on their progress
towards finding the error, other than a few seconds to read the
message. For this reason, ERL is being put into use within
AcmeStudio.

VI. COMPLEX EXAMPLES FROM MDS

The Acme specifications in the case study were created for
the purpose of the study, so in this section we explore how
ERL handles a real Acme specification. For this purpose, we
will use the Mission Data System (MDS), one of the most
complex architectures specified in Acme. MDS specifies a
state-based reactive control architecture for space systems.
More about MDS and its Acme specification can be found
in [6].

What makes MDS so complex is the number of constraints
between two or more architectural elements. In order to
express these constraints in Acme, the user needs a universal
quantifier for each element, plus quantifiers over the sub-
elements that attach larger elements together. The end result
is that in order to specify a constraint betweenn elements,
we may need2n quantifications. For this reason, it is not
uncommon for Acme specifications to have four or more
quantifiers.

Given the complexity of these specifications, the writers of
MDS also added generic error messages to each specification.
In this section, we will compare these generic error messages
to the specific error messages provided by ERL.

Figure 4 is a sample of a specification, and all necessary
sub-specifications, from MDS. As we can see from the error
message, this rule checks that only estimators receive com-
mands from actuators. The specificationrule112 calls out
to a sub-specification to do the work. If this specification
fails because an Estimator’s port was properly connected, but
not of type CommandNotifProvPortT, the original version of
AcmeStudio would give the error message:

Rule 2.3: An Actuator may only notify estimators of
commands

Since the rule is defined at the system level, the user would
have to investigate every connection between actuators and
other components. To make matters more confusing, the user
would probably look for an Actuator that is connected to
something that is not an Estimator, when the real problem
is the port type of the Estimator’s port.

ERL would have produced the error message:5

estPort must declare the type CommandNotifProv-
PortT since actPort is connected to estPort.

and would direct the user to estPort, the port on the Estimator
which is causing the failure. If this failure occurred multiple
places in the system, then ERL would produce a distinct error
for each failing port.

Another MDS rule checks that a component does not
connect twice to a port on another component. Like the
previous specification, this specification has several quantifiers
and eventually has an implication that checks whether some
ports are connected incorrect. The generic error message for
this rule is:

Rule 10: No two ports of a component should be
connected to the same target port.

This does explain the problem that the specification is trying
to find, but it doesn’t tell us which ports are the problem.
If a component had two ports,portA andportB that both
eventually connect tootherPort, then ERL would produce
the specific error message:

portA must equal portB since portA is connected to
otherPort and portB is connected to otherPort.

Ideally, the user should see both the generic and specific
messages. The generic description provides the user with
the specification intent and would help the user understand
the system goals. However, the ERL error message provides
actionable guidance for how to fix the current error.

The last MDS example we consider checks that Sensors
are in the correct state based upon how many Estimators are
listening for data. The generic message for this rule is:

Rule 4.4: A sensor that it not connected to any
estimators should specify that it is only raw data; if
it is connected to more than one estimator, it should
specify that it is informative to more than one.

Of course, only one of these two things could be true at any
point; the sensor can not be hooked up to no estimators and
more than one estimator at once. With ERL, not only does
the user find out which sensor is causing the problem, they
also find out which predicate is actually breaking and receive
direct guidance on how to fix the error:

mySensor.rawData must equal true since the number
of estimators connected to mySensorPort is 0.

While the generic messages do help us understand the
purpose of the specification and prevent us from making future
errors, they do not help a user find the cause of their error.
This is particularly important for specifications as complicated

5The ability to descend into an Acme sub-specification is currently being
implemented.

rule rule112 = R2_3(self)
<<label : string = ‘‘Rule 2.3: An Actuator may only notify estimators of commands’’; >> ;

analysis R2_3(sys : system) : boolean =
(forall compA : ActuatorT in sys.COMPONENTS |
forall pA : CommandNotifReqrPortT in compA.PORTS |
forall compX : Component in sys.COMPONENTS |
forall pX : Port in compX.PORTS | connected(pA, pX) ->
(declaresType(compX, EstimatorT) and declaresType(pX, CommandNotifProvPortT)));

Fig. 4. MDS Specification

as MDS; even if the control system using MDS is small, it is
still difficult to parse through the specifications by hand. If the
system itself is also large, the user must spend a great deal of
time checking parts of the system that are already correct. The
user study and MDS examples show that ERL error messages
are a useful addition to the existing error reporting mechanisms
because they help users to find the root cause of the error, even
in complex specifications and large systems.

VII. R ELATED WORK

Shapiro [5] explored and formalized algorithms for how
programmers debug logic programs. Shapiro’s algorithm for
debugging a system with incorrect output is the most similarto
the algorithm we have proposed. Like Shapiro, we investigate
the sub-predicates for the source of the error, and we use
an independent oracle to determine the correctness of a sub
predicate. However, Shapiro’s algorithm stops at the first
failing sub predicate. Our algorithm continues to gather all of
the failure points in the predicate, as well as produces them
into a human readable error message. Additionally, ERL uses
a heuristic to identify a responsible object for the error sothat
the user receives direction on the failing object, not just the
failing specification.

ESC/Java uses an error reporting mechanism that also
aims to provide the user with a failure point and a directed
error message [7]. However, the error reporting mechanism
is inherently different from ERL because ESC/Java’s checks
that the specifications hold true universally as a set, while
tools such as Acme check that individual specifications hold
true. Since ESC/Java’s specifications must hold true together,
the theorem prover can not break apart the specifications and
check them individually the way ERL’s oracle does. It is the
oracle’s ability to analyze sub-predicates of the specification
that allow ERL to find the root cause of the error and provide
the directed message. For ESC/Java, [7] can not find the root
cause of the error, but it does display the point where the
theorem prover found a counter-example to its proof. To show
the user how it got into this bad state, the ESC/Java error
generator creates a trace based upon labels it leaves in the
logical predicates.

ESC/Java also has slightly different goals from ERL due
to the way their users fix errors. The work on ESC/Java at-
tempts to generate fewer errors and condense them; ESC/Java
produces one error for each method rather than one error for
each failing path. ERL attempts to do the opposite; it splits
the errors at every opportunity. This difference makes sense

when we consider how the users find and fix these errors. A
user of ESC/Java works on the entire method and considers
the whole problem as a single error. On the other hand, a user
of Acme regards multiple failures from a universal quantifier
as different errors. While the errors were all generated by the
same specification, they are about different parts of the system
and likely are not related.

The model checking community has also investigated error
reporting [8]; the work which is closest to ours is that of [9].
The goals stated in [9] are very similar to the ones we present;
they look to get at the cause of an error trace from a model
checker, rather than the symptom. When they determine the
cause of the error, they then produce one error trace for each
cause and generate separate error traces for each cause. The
main hindrance is that, like the work with ESC/Java, it is
difficult to treat a model checker as an oracle because it can
not analyze sub predicates individually. Ball et al. proposed
a heuristic for the problem by using correct traces to narrow
down the problems in the failing traces. This heuristic allows
for a model checker to be treated in a fashion similar to our
oracle, but it requires that enough correct traces exist to guide
it.

There is a large body of work on messages for typing errors
(summarized in [10]). The research which uses program slicing
[11] to find the causes of type errors [12]–[14] is the closest
to ERL. Program slicing is a technique for analyzing which
parts of a program are involved in computing the value of
a variable at a particular program point. By analogy, ERL
can be viewed as an approach for analyzing which parts of a
specification and a model result are responsible for causingthe
specification to fail on that model. Rather than following data-
and control-dependencies in a program, our approach analyzes
how the truth of a logical specification depends on the truth
of its parts.

Another system for describing typing errors, Seminal [15],
uses a similar mechanism as ERL for separating the error-
generation system from the checker itself. Seminal also treats
the checker as an oracle of knowledge and will break down
expressions into sub-expressions in order to find the root
cause of a typing error. Upon finding the root cause, Seminal
searches for similar sub-expressions that will typecheck,and
it suggests the “best” similar sub-expression to the user asan
alternative. However, the sub-expression produced by Seminal
may not be the sub-expression the user actually wants, and
may then mislead the user. While ERL does not currently

provide a correct alternative, it also does not provide the
user with misleading information. As the two systems provide
different kinds of information, we expect that using both
techniques would be beneficial for users.

VIII. C ONCLUSION

We have presented error reporting logic (ERL), a system
for automatically generating error messages from first-order
predicate logic. ERL presents a user with a precise error
message by automatically analyzing the specification to select
only the predicates involved in the failure. Additionally,it uses
a heuristic to assign fault to a particular object so that theuser
is directed to the point of failure.

Our user study shows that most users were helped by
the ERL error messages, particularly in errors from con-
junction, disjunction, and universal quantification predicates.
ERL provided users with an indication of the source of the
error and specific instructions about how to fix the error.
When ERL did not help, it also did not mislead the users.
This is a large improvement over the control system which
did not provide the users with any specific guidance. While
general guidance is useful for preventing future problems and
providing knowledge for the user, it does not help the user fix
the current problem.

The user study also provided some interesting insights into
how users find the root cause of the error. In particular, we
found that users frequently scan any text for keywords that will
lead them to the cause of the error, and they only read text for
content if they are stuck or want to confirm their suspicions.
During the study, participants also vocalized concern about not
knowing which parts of the specification was failing. Finally,
we found that participants fell back to pattern recognition
when they could not be helped through other mechanisms.
ERL addressed all the issues we saw except providing a
“good” pattern to follow.

While ERL is certainly useful for Acme and similar speci-
fication systems, we anticipate that it will have greater benefit
in more complex specification systems. Systems which require
more complex logical connectives can easily extend the ERL
concepts of splitting and joining errors to produce more useful
error messages. ERL may also prove beneficial for systems
where specifications are globally distributed by pinpointing
only the relevant parts of the global specification. We look
forward to seeing how other specification systems may be able
to extend the concepts presented in ERL.

ACKNOWLEDGEMENTS

The authors would like to thank the AcmeStudio team for
their feedback and assistance, especially Bradley Schmerland
Nicholas Sherman. This work was supported in part by NSF
grant CCF-0546550, DARPA contract HR00110710019, the
Department of Defense, Army Research Office grant number
DAAD19-02-1-0389 entitled Perpetually Available and Secure
Information Systems, the Software Industry Center at CMU
and its sponsors, especially the Alfred P. Sloan Foundation,
and a fellowship from Los Alamos National Laboratory.

REFERENCES

[1] D. Garlan, R. Monroe, and D. Wile, “Acme: an architecturedescription
interchange language,” inConf. of the Centre for Advanced Studies on
Collaborative research, 1997.

[2] D. Hou and H. Hoover, “Using SCL to specify and check design intent
in source code,”Trans. on Software Eng., 2006.

[3] D. Jackson, “Alloy: a lightweight object modelling notation,” Trans.
Softw. Eng. Methodol., 2002.

[4] “AcmeStudio,” http://www.cs.cmu.edu/ acme/AcmeStudio/.
[5] E. Y. Shapiro, “Algorithmic program diagnosis,” in9th Principles of

programming languages, 1982.
[6] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks, “Software archi-

tecture themes in JPL’s Mission Data System,”IEEE Aerospace Conf.
Proc., vol. 7, pp. 259–268 vol.7, 2000.

[7] K. R. M. Leino, T. Millstein, and J. B. Saxe, “Generating error traces
from verification-condition counterexamples,”Sci. Comput. Program.,
2005.

[8] A. Groce and W. Visser, “What went wrong: Explaining counterexam-
ples,” in 10th Intl. SPIN Workshop, 2003.

[9] T. Ball, M. Naik, and S. K. Rajamani, “From symptom to cause: lo-
calizing errors in counterexample traces,” inPrinciples of programming
languages, 2003.

[10] B. Heeren, “Top quality type error messages,” PhD thesis, Universiteit
Utrecht, The Netherlands, 2005.

[11] M. Weiser, “Program slicing,”Trans. Software Engineering, July 1984.
[12] V. Choppella and C. Haynes, “Diagnosis of ill-typed programs,” Indiana

University, Tech. Rep. 426, 1994.
[13] C. Haack and J. B. Wells, “Type error slicing in implicitly typed higher-

order languages,”Sci. Comput. Program., vol. 50, no. 1-3, pp. 189–224,
2004.

[14] F. Tip and T. B. Dinesh, “A slicing-based approach for locating type
errors,” Trans. Sfw. Eng. Methd., vol. 10, no. 1, pp. 5–55, 2001.

[15] B. S. Lerner, M. Flower, D. Grossman, and C. Chambers, “Searching
for type-error messages,” inProgramming language design and imple-
mentation, 2007, pp. 425–434.

